

Overview

- Why is power a problem?
- What can FPGA's do?
- Are we safe now ?
- What else can FPGA's do?
- Summary

The Shrink and Its Impact

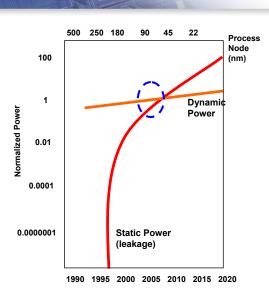
Speed

Cost

Power

MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan


6/25/2008

3

Semiconductor Industry Challenges

- Static power increases significantly at <100nm geometries
- Subthreshold Leakage
 - Raising VT helps, but there's a limit.
 - Strain helps, but that's already been done
 - Worsens with reduced voltage
- Power and Speed at Odds
- Power is becoming a market limiter

Source: Int'l Technology Roadmap for Semiconductors (ITRS)

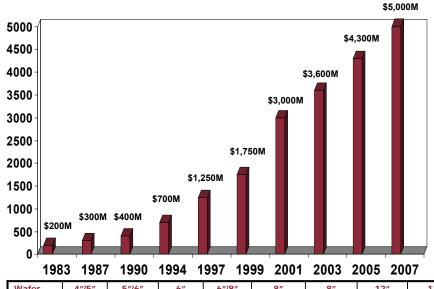
What about Dynamic Power

Power = CV^2F

- Low K helps, but C is going up due to higher densities
- Fell previously, but now same
- Increasing steadily

MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan


6/25/2008

Semiconductor Fab Cost Trend Acte

Rising Fab Cost

Source: UMC

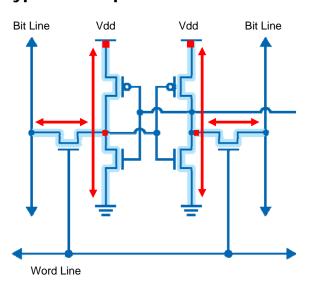
Wafer 4"/5" 5″/6″ 6"/8" 8 12 Process 1.2um 1.0um 0.8um 0.35um 0.25um 0.13um 0.09um 0.5um

Trends Continue to Drive Demand for Low-power FPGAs

- Portable and battery-operated electronics proliferation
- Hyper-competitive markets with shorter product lifecycles and evolving standards
 - Increasing need for interfacing, bridging and control
- Power budgets tighten
 - Features, performance and complexity grow, but not at expense of draining the battery or increasing footprint
- Static power consumption and low-power modes most important for portables

MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan


6/25/2008

7

Flash's Fundamental Advantage

Typical Competitors SRAM Cell - 6T

- Substantial Leakage per Cell
- High Static Current

- Negligible leakage per cell
- Ultra Low Static Current

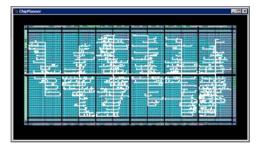
What did we do in Technology and Design

- Integrate Flash and High Speed embedded logic process
- Deploy Low Power Vt options, Multiple Threshholds
- Single supply for core and I/Os
 - As low as 1.2V
- Seamless Low Power Power modes
 - Static, Flash*Freeze
- Feature-Rich
 - RAM, PLL, I/O Standards, Cortex-M1

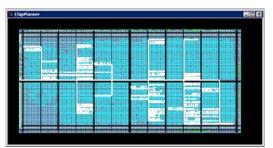
MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan

6/25/2008


a

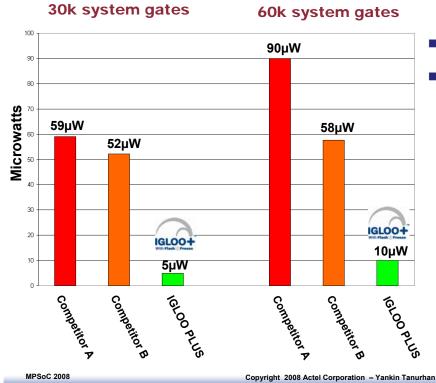
Power-Aware Tools



- Power Driven Layout
 - Yields lowest power consumption possible
 - Reduces dynamic power by 30%

Timing-driven layout

Power-driven layout



SmartPower

- Create Power profiles based on functional modes
- Cycle-accurate analysis
- Spurious transitions analysis
- Battery life estimation tool
- Enable Variable Voltage use modes

A Static Power Comparison

- IGLOO PLUS 5µW
- Competitors
 - "Low-power CPLDs"
 - SRAM-based, lowpower PLDs
 - 10x higher power

6/25/2008

Declare victory and go home.

Server Room

MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan

6/25/2008

13

Server Math

Power for:

100%	Server
60 %	Fan and Air Conditioning
60%	Switch, Router and Network
220%	

IE Total Power = 2.2x Server Power

Press Coverage: Server Farms

- 4 Google
 - 2 North Carolina
 - 1 South Carolina
 - 1 Oregon
- 1 MicroSoft Washington
- 1 Yahoo Washington

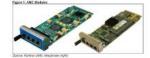
- All close to cheap, plentiful power
- 1.2% of electricity consumed in the US is used in server farms

"Energy costs will soon eclipse hardware costs. Possibly by a large margin."

Luiz Barroso. Google

MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan


6/25/2008

15

Industry is reacting with System Management Standards

- Telecommunications Computing Architecture (TCA)
 - Standards by PCI Industrial Computer Manufacturers Group (PICMG)
- Advanced Telecommunications Computing Architecture (ATCA)
 - December 2002 PICMG standard
 - Current rev of std is PICMG 3.0 R2.0 ECN002 adopted 29 April 2006
 - Architecture for high-performance, high-density, packet-based systems
- Advanced Mezzanine Card (AMC)
 - January 2005 PICMG standard
 - Current rev of std is <u>PICMG AMC.0 R2.0</u> adopted 15 November 06
 - Extends ATCA's high-bandwidth multi-protocol interface to hot-swappable modules for easy design, scaling, servicing

- July 2006 PICMG standard
- Current rev of std is <u>PICMG MTCA.0 R1.0</u> adopted 06 July 2006
- Smaller form-factor chassis delivers central power management, lower cost, high availability

- 1995 standard initiated by Intel. Dell, HP, Intel and NEC announced IPMI v1.0 on 16 September 1998
- Current rev of std is <u>IPMI v2.0 rev. 1.0 specification markup for IPMI v2.0/v1.5 errata revision 3</u> dated 15 February 2006
- Intelligent Platform Management Bus (IPMB) defines internal management bus for extending platform management within a chassis
- Intelligent Chassis Management Bus (ICMB) defines external management bus between IPMI enabled systems
- ATCA, AMC, MicroTCA all communicate using IPMI protocol

Our customers are in need of System Management

- Manage Power Up: Power Sequencing, Status Monitoring
- Monitor Sensors and Report Status, Sensor Data
 - Temperature
 - Voltage
 - Current
 - Boot Status
- Take Immediate Actions based on Sensor Readings
 - Over/undervoltage/current/temp
- Communicate with System Controllers/Hubs
 - Oversee system inventories
 - Implement system-level redundancy
 - Manage Hot Swap
 - Respond to management queries and commands

MPSoC 2008

Copyright 2008 Actel Corporation - Yankin Tanurhan

6/25/2008

17

Summary

- Power-conscious design is becoming more critical
 - Not only choice of components but designing smart for power
- You can minimize power consumption today
 - Innovative low-power FPGAs and programmable system chips
 - Power optimization tools
- At 5µW, Actel's IGLOO family is the low-power PLD leader
- We continue to expand our Power Concious FPGA portfolio with families like Fusion to adress power management needs